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a b s t r a c t

This work presents a new implementation of the boundary face method (BFM) with shape functions

from surface elements on the geometry directly like the boundary element method (BEM). The

conventional BEM uses the standard elements for boundary integration and approximation of the

geometry, and thus introduces errors in geometry. In this paper, the BFM is implemented directly based

on the boundary representation data structure (B-rep) that is used in most CAD packages for geometry

modeling. Each bounding surface of geometry model is represented as parametric form by the

geometric map between the parametric space and the physical space. Both boundary integration and

variable approximation are performed in the parametric space. The integrand quantities are calculated

directly from the faces rather than from elements, and thus no geometric error will be introduced. The

approximation scheme in the parametric space based on the surface element is discussed. In order to

deal with thin and slender structures, an adaptive integration scheme has been developed. An adaptive

method for generating surface elements has also been developed. We have developed an interface

between BFM and UG-NX(R). Numerical examples involving complicated geometries have demon-

strated that the integration of BFM and UG-NX(R) is successful. Some examples have also revealed that

the BFM possesses higher accuracy and is less sensitive to the coarseness of the mesh than the BEM.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary face method (BFM) has been implemented with
shape functions from moving least-square (MLS) approximation
[1]. Although the method has some attractive features in common
with meshless methods [2–5] such as the hybrid boundary node
method (HBNM) [3], it often encounters troubles when dealing
with bodies with small holes and fillets. To solve problems
involving domains with arbitrarily trimmed surfaces and to get
better efficiency, this paper presents a new implementation with
shape functions from boundary finite elements.

In the conventional BEM implementation of structural ana-
lyses, a geometric model is firstly built with a CAD package, the
geometric model is then converted into a discrete model using a
meshing tool. The CAD and BEM are treated as separate modulus
requiring different methods and representations [6], which
include continuous parametric models and discrete models,
respectively. The elements are used for boundary integration
and approximation of geometry in the BEM. Once the BEM model
is constructed from CAD, the information of geometry is only
derived from standard elements. Therefore, geometric errors are

introduced. Moreover, the link between BEM model and CAD
system is often unavailable, thus makes it difficult to carry out
adaptive mesh refinement [7].

To cope with the problems above, we have developed the BFM
[1]. A primary goal of our research is to make the computational
model geometrically exact no matter how coarse the discretiza-
tion is. Another goal is to simplify mesh refinement by eliminating
the need for communication with the CAD geometry once the
initial mesh is constructed. Yet another goal is to more tightly
integrate the mesh generation process within CAD [7]. In our
implementation, both boundary integration and variable approx-
imation are performed on boundary faces, which are represented
in parametric form exactly as the boundary representation data
structure in most CAD systems. The parametric surface, which
encapsulates the exact geometry of corresponding face, is
discretized by surface elements in parametric space. These
elements are used for the boundary integration and variable
approximation. For boundary integration, however, the geometric
data at Gaussian quadrature points, such as the coordinates, the
Jacobian and the outward normal are calculated directly from the
faces rather than elements, thus no geometric error will be
introduced. The direct boundary integration and approximation in
parametric space of surfaces forms an intrinsic feature of the BFM
when compared with the conventional BEM.
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The BFM is implemented directly on a solid modeling data
structure, namely the boundary representation (B-rep). As the
B-rep is used in most of CAD packages, it should be possible to
exploit their Open Architecture feature, and automatically obtain
required coefficients (representation). Therefore, our implemen-
tation has a real potential to seamlessly interact with CAD
software, integrating easily geometric design and engineering
analysis into a completely unified framework [6–8]. To show the
advantageous features, we have developed an interface between
BFM and UG-NX(R). Numerical examples have demonstrated that
the integration of BFM and UG-NX(R) is successful, which may be
an important step toward automatic simulation.

To deal with thin and slender structures effectively, an
adaptive integration scheme for nearly singular integrals is
developed. We have also developed an adaptive mesh generation
method over an arbitrarily parametric surface based on the
advancing front method (AFM) [9,10] combined with a quad-tree
procedure. We have compared the presented method with the
BEM with regard to accuracy, convergence and sensitivity of the
results to the mesh density. Some examples that involving
complicated geometry or small features are presented to verify
the accuracy, efficiency and feasibility of the BFM. All results have
shown very attractive features of the method.

The paper is organized as follows. In Section 2, the approxima-
tion scheme based on the surface element is described. Section 3
briefly describes the well-known BIE for potential problems. The
adaptive face integration scheme is demonstrated in Section 4.
Section 5 presented the adaptive mesh generation method.
Numerical examples for 3-D potential problems are given in
Section 6. The paper ends with conclusions in Section 7.

2. The approximation scheme in parametric space

As the BEM, the boundary of the 3-D solid is only needed for
solving potential problems with the BFM. For the method, the
boundary consists of a set of surfaces with parametric representa-
tion and the field variable approximation is performed in
parametric space of each surface. This is a distinguishing feature
between BFM and BEM.

As we known, a surface in physical space, O, is represented in
parametric form as

rðx,y,zÞ ¼ rðxðu,vÞ,yðu,vÞ,zðu,vÞÞ ¼ rðu,vÞ ð1Þ

where r is the position vector, and u and v are the parametric
coordinates, which are constrained to the interval [0,1] mostly.
The domain in parametric space corresponding to O is denoted by
~O, and it is assumed that the map F : ~O-O by Eq. (1) is referred

as a geometric map here. Since the geometric map is created, the
shape function and its derivatives can be constructed over the
parametric space ~O. Then the subsequent variables in physical
space at the parametric location (u, v) can be calculated using F,
such as the coordinates (x, y, z).

In the parametric space ~O, the methods using MLS [1] and
NURBS [11] are proposed to approximate variable in success. With
those methods, numerical results with better accuracy may be
obtained, but the generality is lost when it needs to be extended
to any trimmed surface [1,11]. In this paper, a simple but effective
approximate method through Lagrange Polynomial is presented
here, which is based on a surface element, similar to the standard
Lagrange element [12]. The surface element is defined in the
parametric space ~O of the surface. This is different from the
element used in the conventional BEM.

To illustrate the approximation scheme, the quadrilateral
surface element with four interpolating nodes in the space ~O
(see Fig. 1) used for variable approximation is discussed in this

paper. The element constructed by isocurves (the parametric line
segment with constant coordinate value of u or v) is shown in
Fig. 1(a), and Fig. 1(b) depicts the element consists of no isocurves.

The four interpolation functions associated with each node for
the two types of elements above are given as follows:

N1 ¼
1

4
ð1þxÞð1þZÞ; N2 ¼

1

4
ð1�xÞð1þZÞ

N3 ¼
1

4
ð1�xÞð1�ZÞ, N4 ¼

1

4
ð1þxÞð1�ZÞ

x, ZA �1,1½ �

ð2Þ

The shape functions are used to interpolate variables in both
types of elements. With the method discussed in Ref. [12] on how
to obtain derivatives of the shape function for isoparametric
element, the derivatives Nk,u and Nk,v in the space ~O can be
deducted easily. We omit the details for the sake of brevity.
However, how to obtain parametric coordinates (u, v) responding
(x,Z) is different for both types of elements. For the first type of
element (Fig. 1(a)), the parametric coordinates are obtained by
the following simple linear transformation:

u¼ 0:5ðub�uaÞþ0:5ðubþuaÞx
v¼ 0:5ðvb�vaÞþ0:5ðvbþvaÞZ ð3Þ

While considering the second type of element (Fig. 1(b)), the
parametric coordinates are also interpolated by the shape
functions above as the follows:

u¼
X4

i ¼ 1

Niui, v¼
X4

i ¼ 1

Nivi ð4Þ

If we obtain the parametric coordinates (u, v) in the space ~O
located at the surface element, the physical coordinates (x, y, z) in
the space O can be calculated by the geometric map F.
Consequently, a calculated point defined by these physical
coordinates is located on the initial surface, and no geometric
errors are introduced. It should be noted that the surface element
constructed by parametric straight lines is usually made up of
smooth curved edges in physical space O. So the need to employ
isoparametric element defined in the space O to represent curved
surface element is circumvented, thus avoiding complex mathe-
matic transform needed for isoparametric element [12].

For the problems in potential theory, the independent boundary
variables on the boundary of the solid to be solved are the potential
and its normal gradient. Considering the geometric map F, these
variables are interpolated by shape functions as

uðx,y,zÞ ¼ uðu,vÞ ¼ uðx,ZÞ ¼
XN

k ¼ 1

Nkðx,ZÞuk

qðx,y,zÞ ¼ qðu,vÞ ¼ qðx,ZÞ ¼
XN

k ¼ 1

Nkðx,ZÞqk ð5Þ

where uk and qk are the nodal values of the potential and the
normal gradient, N is the total number of interpolating nodes. The
values of u and q for any field point in the surface element are only
dependent on its nodal values and shape functions.

As we known, the CAD model is represented by NURBS usually
and is not watertight in most cases due to the fact that gaps may
appear in the interface of two NURBS surfaces [13]. This makes it
unsuitable to place interpolating nodes at the edge of a surface
where gaps occur. To deal with the problem, the strategy
suggested by Kane [12] that allows both continuous and
discontinuous elements to coexist in the same BEM model is
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extended to be used in BFM. Discontinuous elements are
employed along the boundary of a surface and continuous
elements are adopted in the surface interior, thus there is not
any interpolating node located at the surface edge as shown in
Fig. 2. The procedure to obtain shape functions for any type of
discontinuous element can be found in Ref. [12].

3. Boundary integral equations and integration issues

The potential problem in three dimensions governed by
Laplace’s equation with boundary conditions is written as

u,ii ¼ 0, 8xAY
u¼ u, 8xAGu

u,ini � q¼ q, 8xAGq

ð6Þ

where the domain Y is enclosed by G¼Gu+Gq, u and q are the
prescribed potential and the normal flux, respectively, on the
essential boundary Gu and on the flux boundary Gq, and ni,
i¼1,2,3 are the components of the outward normal n direction to
the boundary G.

The problem can be recast into an integral equation on the
boundary. The well-known self-regular BIE for potential problems
in 3-D is

0¼

Z
G
ðuðsÞ�uðyÞÞqsðs,yÞdG�

Z
G

qðsÞusðs,yÞdG ð7Þ

where q¼ @u=@n, y is the source point and s is the field point on
the boundary. us(s, y) and qs(s, y) are the fundamental solution
and its derivative, respectively. For 3-D potential problems,

usðs,yÞ ¼
1

4p
1

rðs,yÞ
ð8Þ

qsðs,yÞ ¼
@usðs,yÞ

@n
ð9Þ

with r being the Euclidean distance between the source and field
points.

The approximation scheme in the parametric space ~O derived
in Section 2 will be used to approximate u and q on the boundary
G. The bounding surface is discretized into elements in the space
~O face by face. These elements are generated by the advancing

front method (AFM) [9,10] to be discussed in Section 5. Dividing G
into NE elements and substituting Eqs. (5) into (7), we have

0¼�
XNE

j ¼ 1

Z
Gj

qsðs,yÞ
XN

k ¼ 1

ðNkðsÞ�NkðyÞÞuk dG

þ
XNE

j ¼ 1

Z
Gj

usðs,yÞ
XN

k ¼ 1

NkðsÞqk dG ð11Þ

where Nk(y) and Nk(s) are the contributions from the kth
interpolation node to the collocation point y and field point s,
respectively.

Eq. (11) can be put in a matrix form as

Hu�Gq¼ 0 ð12Þ

where u and q contain the approximations to the nodal values of
u and q at the boundary nodes. A well-posed boundary value
problem can be solved using Eq. (12).

The first term on the right hand side of Eq. (11) is regular in
any case. Therefore, regular Gaussian integration can be used to
evaluate it over each element. However, special integration
techniques are required for the second term, since it will become
weakly singular as s approaches y. When y and s belong to the
same element, the element is treated as a singular element and
the special techniques developed in the next section are used to
carry out the integration. Our integration scheme is different from
that developed by Chati and Mukherjee [14] and may provide
better accuracy. This is because we carry out the integrations
directly in the parametric space of a face rather than over
elements, and thus no geometric error will be introduced.

Even when y and s belong to different element, they can still be
very close to each other. In this case, the second term on the right
hand side of Eq. (11) becomes nearly singular. This case occurs
when thin structures are involved and when the distribution of
elements is very irregular. We have also developed an adaptive
scheme to calculate nearly singular integrals in the next section.

u

v
12

3 4u

v 2 (ua,vb)
2 (u2,v2) 1 (u1,v1)

3 (u3,v3) 4 (u4,v4)3 (ua,va) 4 (ub,va)

1 (ub,vb) �

�

Fig. 1. Four-node surface elements: (a) rectangular element in parametric space; (b) quadrilateral element in parametric space and (c) coordinate mapping.

Fig. 2. Both continuous and discontinuous elements coexist in the same BFM

model (elements on two adjacent surfaces are shown). Interpolating nodes are

denoted by ‘‘K’’.
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Since each surface element employed in our method is defined
in the parametric space ~O, the geometric map F : ~O-O is
simultaneously preserved to calculate the integrand quantities
in the physical space O in the process of the integration. The
physical coordinates of integration point corresponding to the
parametric values (u, v) are calculated by Eq. (1). According to
the theory about parametric surface, the unit outward normal
n(u, v) can be obtained by the following expression:

nðu,vÞ ¼
ruðu,vÞ � rvðu,vÞ

ruðu,vÞ � rvðu,vÞ
�� �� ð13Þ

where ruðu,vÞ and rvðu,vÞ are tangent vectors at the point (u, v)
over the surface, and the two vectors are defined as

ruðu,vÞ ¼
@rðu,vÞ

@u
¼

@xðu,vÞ

@u
,
@yðu,vÞ

@u
,
@zðu,vÞ

@u

� �
ð14Þ

rvðu,vÞ ¼
@rðu,vÞ

@v
¼

@xðu,vÞ

@v
,
@yðu,vÞ

@v
,
@zðu,vÞ

@v

� �
ð15Þ

in which other symbols have been defined in Eq. (1). And the
Jacobian JS of the geometric map F is given as

JS ¼ ruðu,vÞ � rvðu,vÞ
�� �� ð16Þ

Note that the integrand quantities for each integration point
are derived from corresponding parametric surface by the
geometric map F, making the computational geometry data to
be exact. This is another distinguishing feature of BFM, when
compared with conventional BEM in which the geometry data are
approximated from elements.

4. Weakly and nearly singular integration schemes

4.1. Weakly singular integration

The second term on the right hand side of Eq. (11) becomes a
weakly singular integral when y and s belong to a same element,
and the element is treated as a singular element. There have been
various methods proposed in the past to handle weakly singular
integrals arising in BEM. Chati and Mukherjee have used a method
suggested by Nagaranjan and Mukherjee [15] to carry out the
weakly singular integration in BEM. Here we extended the
method discussed in Ref. [1] to calculate singular integral
occurred in arbitrary surface element in parametric space ~O.
The details are presented as follows.

To describe the problem, we take a quadrilateral surface
element as an example here. If the element is not rectangular in
shape in the space ~O, as show in Fig. 3(a), a special coordinate
transformation is applied to map it into an intrinsic coordinate
system defined by (t1, t2) (see Fig. 3). Specially, if a surface
element is constructed by isoparametric lines with rectangular

shape in the parametric space, there is no need for this
transformation.

Consider the weakly singular integral over the element as
shown in Fig. 3(a). This can be represented as

I¼

Z
patch

Oð1=rÞdG ð17Þ

Now, a square element in the intrinsic coordinate system can
be divided into two, three or four triangles, depending on the
location of the source point (on corner, edge or inside) (Fig. 3). To
use Gaussian quadrature, the following mapping is used for each
triangle (Fig. 4):

ta
1 ¼ t0

1þðt
1
1�t0

1Þa
ta
2 ¼ t0

2þðt
1
2�t0

2Þa ð18aÞ

tb
1 ¼ t0

1þðt
2
1�t0

1Þa
tb
2 ¼ t0

2þðt
2
2�t0

2Þa ð18bÞ

t1 ¼ ta
1þðt

b
1�ta

1Þb

t2 ¼ ta
2þðt

b
2�ta

2Þb
, a,bA ½0,1� ð18cÞ

Then the integral I can be written as

I¼
XNp

i ¼ 1

Z 1

0

Z 1

0
Oð1=rÞJSðsÞJPðsÞdt1 dt2

¼
XNp

i ¼ 1

Z 1

0

Z 1

0
Oð1=rÞJSðsÞJPðsÞJ

ðiÞ
L ðaÞdadb ð19Þ

where JS has be defined in Eq. (16), JP is the Jacobian of the
transformation from dG to dt1dt2, Np is the total number of
triangles, JðiÞL ¼ aSD and

SD ¼ t1
1t2

2þt2
1t0

2þt0
1t1

2�t2
1t1

2�t0
1t2

2�t1
1t0

2

�� �� ð20Þ

which is the area of the triangle in the intrinsic coordinate space,
and keeps constant over the triangle. Now, regular Gaussian
integration can be used to evaluate the above integral I.

In order to deal with thin structures effectively without having
to use many surface elements with very fine size, but using coarse
elements with slender shape in physical space, the subdivision of
a slender element is divided into several triangles and additional
quadrangles, which is different from that for a regular element
shown in Fig. 3. The subdivision for an irregular element is
dependent on the location of the source point as well. Fig. 5 shows
the subdivisions for different locations of the source point.

For each triangle, the singular integrals are calculated by the
scheme discussed above, while for the quadrangles, an integration

quadrilateral element

t1

t2

s

t1

t2
t1

t2

s
s

u

v

at corner on edge inside 

Fig. 3. A quadrilateral element and its subdivisions in the intrinsic coordinate system.
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scheme for nearly singular integrals is employed, which will be
discussed in next section.

4.2. Nearly singular integration

Nearly singularities arise in the BIE when slender or thin
structures are considered and in cases where the boundary
element distribution on a surface is very irregular, namely the
densities of elements along the two coordinate directions in
parametric space are very different. Accurate evaluation of nearly
singular integrals is a demanding task for successful implementa-
tion of BIE analyses. So far many techniques for dealing with
nearly singular integrals have been proposed [14–23]. Some of
them are effective but involve complicated mathematic transfor-
mations of the integrals for a specific fundamental solution. To
provide a general approach that is independent of the problem to
be solved, here we developed an adaptive integration scheme
based on the element subdivision method.

In this scheme, we first calculate the maximal boundary length
of the integration element, l, and the distance between the source
point and the center of the surface element, d, in the physical
space O. If l is smaller than kd (k is experiential factor, k¼4 used
in the scheme) this element is taken as a regular integration
patch, or it is divided into two or three or four equal sub-patches
considering its shape in physical space (see Fig. 6). Then for each
sub-patch, we repeat the above procedure until all patches
become regular. Finally, using Gaussian quadrature for all
patches, we can evaluate the integrals in Eq. (11) very
accurately even when the source point is very close to the
integration elements. The subdivided patches of a same element
change for different source points. It should be pointed out that
the surface elements are not like the elements defined in physical
space used in BEM and FEM. Subdivision process is implemented
easily in parametric surface space. Moreover, geometric
information for a sub-patch is also derived from the face where
the element is located, thus the exact geometry is kept.

5. MESH generation based on the advancing front method

For the BFM, the mesh is constructed by surface elements in
the parametric space ~O for each surface. Therefore, the mesh used

for the BFM analysis is unavailable from so far existing mesh
generation softwares, such as HyperMesh. In this work, an
improved mesh generation method is presented for creating
adaptive triangular or quadrangular surface elements over
parametric surface based on the advancing front method (AFM)
[9,10]. Surface elements are generated along with a quad-tree
procedure to control the element size. Special care has been taken
to generate elements with possibly the best shape in the space O
during the advancing front. A local mesh improvement procedure
is employed to enhance the quality of the mesh so that the
obtained elements finally are suitable for boundary integration
and variable approximation in the parametric space. The input
data for present algorithm is a parametric surface and a polygonal
description of the boundary of the surface to be meshed. This
boundary information is given by a list of nodes defined by their
parametric coordinates on the surface and a list of boundary
segments (or edges) defined by their node connectivity. The
overall algorithm is presented briefly next.

5.1. Quad-tree generation

A Quad-tree is created first, which is used to control element
size, similar to initial background meshes. To illustrate the
required steps for Quad-tree generation, a hypothetical example
of a boundary input data is considered, as seen in Fig. 7(a). The
brief descriptions for each step are as follows [10]:

� Quad-tree initialization based on given boundary segments
(Fig. 7(b)). First define the rectangle (root cell) exactly covering
all segments’ end points in parametric space ~O. Then each
segment according to its length in the physical space O is used
to determine the local subdivision depth of the quad-tree.
� Refinement to force a maximum cell (Fig. 7(c)). The quad-tree

is refined to guarantee that no cell in its interior is larger the
largest cell at the boundary.
� Refinement to balance the Quad-tree (Fig. 7(d)). This addi-

tional refinement forces only one or zero level of tree depth
between neighboring cells and provides a natural transition
between regions of different degrees of mesh refinement.

It is noted that the quad-tree is constructed by cells, and each
cell that is defined in parametric surface is well-shaped in
physical space. Local mesh generation is guided by cells according
to their size.

2 2(t1, t2)

1 1(t1, t2)

0 0s (t1, t2)

t2

α

β

b b(t1, t2)

a a(t1, t2)

(t1, t2)

t1

Fig. 4. Coordinate transformation.

s s
s

Fig. 5. Subdivisions for a slender element.

s s s

s s s

A square element

A slender element

Fig. 6. Subdivisions for different elements corresponding to a source point.
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5.2. Advancing front method

The AFM has been successfully applied to the finite element
method generating surface meshes in many CAE software
packages. In our work, the method combined with a Quad-tree
procedure is used to subdivide parametric surface into surface
elements for the BFM pre-processing. As with any advancing front
method, the algorithm begins with a set of boundary segments,
defined as the initial ‘‘front’’, Elements (triangles or quadrilat-
erals) are constructed one by one from the front segments and
grow towards the interior of the surface. The details for
implementation of the algorithm are given in Ref. [9]. However,
surface elements along the surface boundary are not well-shaped
generated by their methods usually, because an element is
created only based on a shortest segment that is made up of
new element boundaries, without taking special care along
surface boundary (Fig. 8(a)). To improve these elements, a new

procedure of advancing fronts is carried out here. Namely, surface
elements are created by layer and layer on the boundary
(Fig. 8(b)), and a shortest segment is picked as a current front
among advancing fronts. The inner elements are also constructed
easily like conventional methods.

Finally, the local mesh smoothing technique derived from Ref.
[10] is used to improve mesh quality by relocating nodes within
an element.

6. Illustrative numerical results

The method has been tested for three types of 3-D geometrical
objects: a torus, a slim solid and an actual machine part. The first
object is used to compare our method with conventional BEM on
accuracy and convergence performance. The slender bar with four
small holes is presented here as a second example, to demonstrate
that our method is able to use unstructured mesh, and has a
capacity to deal with the problem involving fine features or thin
structures. And the last one, a more geometrically complicated
one, is added to verify the applicability of our method to
engineering problems. The latter two objects are original CAD
models, which are directly used for BFM analyses. It may be seen
that our method has real potential to seamlessly interact with
CAD software, and provide a new way toward automatic
simulation with complicated solids. In order to assess the
accuracy of the method, we have used the following cubic
analytical field:

u¼ x3þy3þz3�3yx2�3xz2�3zy2 ð21Þ

In all cases, Laplace’s equation is solved, together with
appropriately prescribed boundary conditions corresponding to
the above analytical solution.

For the purpose of error estimation and convergence study, a
‘global’ L2 norm error, normalized by 9v9max is defined as
follows [1]:

e¼
1

9v9max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i ¼ 1

ðvðeÞi �vðnÞi Þ
2

vuut ð22Þ

where 9v9max is the maximum value of u or q over N sample
points, the superscripts (e) and (n) refer to the exact and
numerical solutions, respectively.

Fig. 8. Different ways to control elements generation.

Fig. 7. Generation of quad-tree structure from a given boundary refinement.
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6.1. Dirichlet problem on a torus

The first example considers a problem in a torus centered at
origin, whose exterior radius and interior radius are 10 and 3
units, respectively. The usual ring polar coordinates y and f are
used. The example is presented here to verify the accuracy and
convergence performance of the BFM in comparison with the
conventional BEM. The Dirichlet boundary condition correspond-
ing to the exact solution (Eq. (21)) is imposed on the surface of the
torus. Field variables are approximated by linear triangular
elements. The results have been obtained for nine sets of elements
listed in Table 1. Fig. 9 shows the torus discretization for the BFM
analyses with 520 surface elements and 302 nodes.

The L2 errors of nodal values of q evaluated using Eq. (22), and
time required for constructing the coefficient matrices are presented
in Table 1. In the table, symbols FErr_q and EErr_q denote the results
from BFM and BEM, and FMat_t and EMat_t denote CPU seconds
used by BFM and BEM, respectively. It is noted that the CPU time for
constructing the matrices by the two methods is almost the same
with respect to different set of elements.

For greater clarity, Fig. 10 shows how the L2 errors are affected by
the different method with the same number of elements. It clearly
shows that our method can obtain more accurate results than
conventional BEM with the same number of elements, and the
convergence rate is faster than the BEM, namely numerical solutions
are more stable. It is also concluded from Fig. 10 that our method is
less sensitive to the mesh density than the BEM and can obtain
acceptable results with a few elements. For example, the result
relative error is only 4.773% obtained by the BFM with 104
triangular elements, while the relative error shoots up to 23.48%
obtained by the BEM with the same number of elements. These
results are reasonable, because in the BFM the geometric data at
Gaussian quadrature points are calculated directly from the faces
rather than from elements through interpolation, thus no geometric
error will be introduced no matter how coarse the mesh is.

6.2. Mixed problem on a slender bar with four small holes

The case of the field for a slender bar with four very slim
cylinder holes governed by Laplace’s equation is presented as the
second example. The solid and its main sizes are shown in Fig. 11.
Four long and small holes are parallel to z-axis of coordinate
system, and very close to each other. A boundary value problem
with mix boundary conditions has been solved for the solid. The
cubic exact solution has been used here (Eq. (21)). The natural
boundary conditions are imposed on the two end faces z¼750 of
the bar, and the essential boundary conditions on all other faces.

Variables are approximated by linear triangular elements on two
end surfaces trimmed by small holes, and variables on any other
surfaces are approximated by quadratic quadrilateral elements.
Those elements are created by an adaptive mesh generation scheme
described in Section 5 (see Fig. 12). Well-shaped elements with
smooth fine to coarse transition are obtained for trimmed surfaces
(see Fig. 13). The numerical results have been obtained using 948

elements and 1236 nodes. The L2 errors of nodal values for u and q

are 0.023% and 0.280%, respectively. Figs. 15 and 16 show results of
the potential and its directional derivative at the inner points
(see Fig. 14) located on the line segment from (0, 0, �48) to (0, 0, 48)
inside the bar, respectively. The gradient is dotted with the z-axis in
order to get the directional derivative along this line. Values of u and
q, at internal points close to the surface of the body, are calculated by
the nearly singular integration scheme described in Section 4.2. It is
seen that results are accurate even when the points are very close to
the boundary.

Numerical results of the normal flux q of the boundary points
(see Fig. 14) are shown in Fig. 17. Those points are located along
the line segment from (0.1616, �0.1892, �49) to (0.1616,
�0.1892, 49) on a slim cylindrical surface. It is seen that the

Table 1
Comparison of relative errors and the computational time results between BFM and BEM.

Total elements 104 150 256 352 520 770 1330 2136 2910

Total nodes 71 98 157 210 302 436 733 1153 1557

BFM

FErr_q(%) 4.773 4.215 3.233 2.699 2.083 1.553 1.030 0.737 0.583

FMat_t(s) o1 o1 o1 o1 o1 1 1 2 4

BEM

EErr_q(%) 23.48 13.55 8.181 5.459 4.006 2.811 1.803 1.231 0.927

EMat_t(s) o1 o1 o1 o1 o1 o1 o1 2 4

Fig. 9. The torus discretization for the BFM.

Fig. 10. Relative error against number of elements by BFM and BEM.
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numerical results are in good agreement with the analytical
solution.

It may be noted here that approximation variables between
two surfaces bounds are discontinuous, yet values in the interior
of each surface are continuous, and the nodal values to be
smoothed in the post-procedures afterward. This provides a more
flexible way to constructed meshes for each surface indepen-
dently. So fine meshes are only used near detailed configurations
on a trimmed surface, and ordinary meshes are created according
to global mesh controlled size. A few slim meshes on a slim
surface are generated without having to use many smaller
elements. Moreover, in our method, we do not use elements to
approximate the geometry. The coarse mesh constructed by

surface elements can keep exact geometric information. Thus, it is
efficient to deal with any slim or thin structures meshed by slim
surface elements for the simulation 3-D potential problems. In
this example, four slim cylindrical surfaces are discretized by
very slim quadrilateral elements. For each element, adaptive
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Fig. 11. The slender bar and its main sizes.

Fig. 12. The BFM discretization for the slender bar.

Fig. 13. Mesh for the surface trimmed by small holes.

Fig. 14. Evaluation points. Boundary points located at one of cylindrical surfaces,

while inner points inside the bar close to four cylindrical surfaces equally.

Fig. 15. Results of potential u for inner points.
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integration schemes based on the element subdivision method
are carried out, discussed in Section 4. The obtained numerical
results have indicated the adaptive integration schemes are
effective.

6.3. Dirichlet problem on a real mechanical part

The problem of a real mechanical part with complicated
geometry is solved here. The part is modeled with boundary
representation (B-rep) data structure obtained from the commer-
cial CAD software UG-NX(R), shown in Fig. 18. As the BFM is
implemented based on the B-rep structure directly, we can
develop an interface between BFM and UG-NX(R) easily. All
geometric information as well as topology relations used for mesh
generation and BFM analysis is available by accessing to program
functionality from the UG Open Architecture. Using the combined
software, an analysis on a real mechanical part is automatically
conducted.

The boundary of the mechanical part is discretized directly on
the CAD model by 2281 surface elements and 2439 nodes (see
Fig. 19). The essential boundary conditions are imposed on all
faces corresponding to the analytical solution (Eq. (21)). Variables

are approximated by quadratic elements for the cylindrical
surface on which the evaluation points are located (see Fig. 19),
and for any other surfaces by linear triangular elements.

The numerical L2 errors of nodal values q is 1.54%, indicating
the integration of the BFM and UG-NX(R) is successful, and our
method is capable of dealing with the problems with complicated
geometry. Numerical results of normal flux q of the points located
on the cylindrical surface are shown in Fig. 20. It is seen that
numerical results are in agreement with analytical solution.

Fig. 16. Results of directional derivative of potential u for inner points.

Fig. 17. Normal flux q at boundary points.

Fig. 18. A mechanical part with complicated geometry.

Fig. 19. BFM discretization for the mechanical part.
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7. Conclusions

The BFM has been implemented with surface elements on the
geometry directly for solving 3D potential problems. The method
provides a new implementation of the BEM. In this method, no
conventional elements are used for boundary integration or
geometric approximation. The boundary integration is performed
using surface elements, which are constructed in the parametric
space of each boundary face. The integral quantities, such as the
coordinates of Gaussian points, the Jacobian, and the out normal
are calculated from the bounding surface using the geometric
map between the physical space and the parametric space, thus
no geometric errors are introduced. The variable approximation
scheme in parametric space based on elements has been
developed, allowing for a consistent way to allow both continuous
and discontinuous surface elements to coexist in the same BFM
model. Adaptive integration scheme for nearly singular integrals
and adaptive mesh generation method based on the AFM
combined with a quad-tree, have also been developed.

The BFM has been verified through a number of numerical
examples with different geometries, boundary conditions types
corresponding to a cubic analytical solution. It was observed that
our method can get more accurate numerical results than the
conventional BEM, and is less sensitive to the mesh density. The
solution is accurate for the potentials and fluxes on the boundary
and inside the domain even with features in small size.

Numerical examples involving complicated geometry have
demonstrated that the integration of the BFM and commercial
software UG-NX(R) is successful. The BFM provides a natural way
to integrate geometric design and engineering analysis into a
completely unified framework. Developing an analysis tool with
the BFM based on CAD modeling packages and combining the
BFM with the fast multipole method [24,25] to solve large scale
practical problems are undergoing.
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Fig. 20. Normal flux q of the points located on a cylindrical surface.
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